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For crystalline polymers the main term of interest out- 
side the zero order scatter will be In. Equation (3) 
has, therefore, been evaluated in part II (Blundell, 
1970) for the particular case when ~(y) has a trapezium- 
like profile. This case represents a structure whose 
projected density shows a gradual linear change in den- 
sity on going from the amorphous to the crystalline 
values. 

The author wishes to thank Dr A. Keller and Dr E. 
R. Howells for their encouragement to write these 
papers. 
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One-Dimensional Models for Small-Angle X-ray Diffraction from Crystalline Polymers. 
II. Model with Continuous Density Changes between Phases 
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The small angle X-ray scatter from crystalline polymers is evaluated by using a one-dimensional model 
where the density between crystal and amorphous phases changes linearly over a finite transition range 
t, and where the sizes of the crystal and amorphous regions fluctuate according to independent Gaussian 
distributions. The calculation is based on the general model formulated in part I. Approximate expres- 
sions are derived for the width and area of the diffraction peaks. The dependence on t occurs in the 
factor sinZ z~st/(nst)2 which affects only the peak intensities. An analysis is made to find how the factor 
will modify theoretical interpretations based on experimental intensity measurements. 

1. Introduction 

When X-rays are scattered from crystalline polymers, 
diffraction maxima are observed at small angles corre- 
sponding to Bragg spacings of a few hundred Ang- 
strSms. This scatter is generally attributed to an alter- 
nation in texture between crystalline and amorphous- 
like intercrystalline regions, in which both regions 
fluctuate in thickness about their respective mean val- 
ues. Most theoretical treatments consider the phenom- 
enon in terms of one-dimensional models where the 
mean density changes abruptly between the crystalline 
and amorphous values, giving a rectangular step den- 
sity profile. The model discussed in this article intro- 
duces, between each phase, a transition zone where 
there is linear change in density from the crystalline 
to amorphous value, thus giving a repeated trapezium 
shape to the density profile. 

The review of the basic scattering situation in part I 
(Blundell, 1970) showed that the periodicity within a 
typical polymer sample can be represented by a one- 
dimensional model consisting of a line of non-over- 
lapping scattering rods arranged parallel to the period- 

icity. The line of rods can then be interpreted as rep- 
resenting tb_e projection onto the line of the excess in 
electron density over the background amorphous value. 
Part I concluded by formulating a general expression 
for the scattered intensity of a model where the density 
along a rod was given by an arbitrary function ~. In 
the present work ~ is taken to have a trapezium profile 
in which there are transition zones of length t at the 
ends of each rod. Such a transition length has also been 
considered by Tsvankin (1964 a, b) in a model which 
is based on slightly different assumptions from those 
used in part I, and which employed different distribu- 
tion statistics from those used here. However in Tsvan- 
kin's conclusions, the effects of  t are not clearly re- 
solved from the other parameters in his model. In the 
present article particular attention is paid to the ways 
in which the intensity curves for a simple rectangle 
profile must be modified when a transition zone is in- 
troduced. 

In this article particular reference is made to the con- 
ditions prevailing in samples made by sedimenting so- 
lution grown crystals (particularly polyethylene), since 
of all polymer systems these have the most well char- 
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acterized morphology. In their simplest form, polymer 
crystals are single lamellae about 100 A thick. In the 
interior the polymer chains are arranged approximately 
perpendicular to the plane of the lamellae. On reaching 
the planar surfaces of the lamellae, most of the chains 
fold back into the crystal. It would appear that some 
of the folds are sharp and regular. The remaining looser 
folds together with free chain ends form layers about 
10 ,~ thick on the lameller faces where the density ap- 
proaches that of amorphous polymer (Keller, 1968). 
Because of the complicated nature of the fold surface 
it is difficult to define the precise boundary of the 
regions possessing the crystalline density. On the fine 
scale the boundary can meander according to the size 
and configuration of each individual fold. On the 
larger scale the boundary will follow any fluctuation 
in crystalline thickness resulting from the chain folding 
crystallization process (Frank & Tosi, 1961). Apart 
from the crystalline regions, fluctuations possibly of a 
related kind can also take place in the nature of the 
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Fig. 1. Model of scattering rods with trapezium density profile. 
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Fig.2. IB calculated from equation (1) with Z=0.8, a~=0.1,t r, 
ay/Y=adZ; curve A, t = 0 ;  curve B, t=0.1~.  

surface layers (Bassett, Blundell & Keller, 1967). The 
total thickness of the lamellae will exhibit a fluctuation 
which is the combined effect of the fluctuations in the 
crystalline and disordered surface regions. On sedi- 
menting and drying to form samples for diffraction 
studies, the crystals stack together to give periodic one- 
dimensional crystal-amorphous structures running at 
right angles to the lamellar planes. The need to examine 
the effect of a transition zone becomes apparent when 
one considers the projection of the mean electron den- 
sity onto a line perpendicular to the lamellae. To a first 
approximation one will obtain the rectangle profile 
discussed previously by other authors. However such 
a representation cannot be wholly realistic since one 
would expect the projection of a meandering boundary 
to produce more gradual changes in density. As a better 
approximation one is therefore led to introduce a tran- 
sition zone where there is a linear change in density. 
It should be noted that several three-dimensional struc- 
tures can give rise to this one-dimensional model. There 
is no way of distinguishing whether the transition zone 
is the result of a gradual density change on an atomic 
level or whether it reflects the projection on a larger 
scale of a meandering sharp crystal-amorphous bound- 
ary. (The problem is complex and depends on know- 
ing the lateral extent over which the projection proce- 
dure should be performed. The findings of Hosemann, 
Wilke & Balta Calleja (1966) suggest that the projec- 
tion should be limited to lateral domains only a few 
hundred AngstrSms wide.) In order to include all rea- 
sonable possibilities in the case of a meandering bound- 
ary, transition lengths approaching the mean amor- 
phous thickness should be considered. Thus for poly- 
ethylene crystals where the crystalline regions typi- 
cally occupy about 80% of total lamellar thickness, 
one would need to examine a range of t up to at least 
15 % of total thickness. Although the transition zone 
can reflect boundary fluctuations within a given lain- 
ella, one must in a trapezium model still allow the 
lengths of the rods and gaps to fluctuate statistically 
in order to account for fluctuations between different 
layers. Previous experiments with polyethylene crystals 
(Hosemann, 1967; Williams, Blundell, Keller & Ward, 
1968) suggest that in the model one should consider 
fluctuations with standard deviations of about 10 % of 
mean thickness, or less. In the more complicated bulk 
crystallized polymer, the deviation will be significantly 
greater. 

The discussion of the trapezium profile model is in 
four parts. First an intensity expression is evaluated 
using the results of part I. Then the shape and varia- 
tion of the intensity curve is related qualitatively with 
the variable parameters of the model. Next approxi- 
mate expressions are developed which describe the 
area and width of the diffraction peaks in terms of the 
model parameters. Finally these expressions are dis- 
cussed in relation to typical experimental measure- 
ments, with particular reference to the way a transition 
zone can modify the deductions. 
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2. Trapezium model 

Tile general profile model considered in part I consists 
of N scattering rods denoted individually by the sub" 
script j arranged along a u axis. Fig. 1 shows the cor- 
responding representation of the density variation for 
rods with trapezium profiles. For the j th  rod, which is 
of length Yj tile density along its length is given by 

~(yj)_ OoY~ for 0 < yj _< t 
t 

=~Oo for t<yj<_(Y~-t) 
=Qo(Yj-yj)/tfor (Yj-t)<yj< rj. 

In the present model, the transition distance t at the 
rod ends will be taken to be a constant for all rods. 
O0 will be taken to be the difference OC--OA between 
the mean electron densities of the crystalline and amor- 
phous-like regions. The general model is based on the 
premise that there is no correlation between the fluc- 
tuation statistics H(Yj) of the rod lengths Yj, and the 
statistics h(Z~) of the gap lengths Zj. For analytical 
convenience H(Yj) and h(Z 0 will here be taken to be 
symmetrical Gaussian distributions, and will be de- 
fined by 

{ t H(Yj)=  av~-2~ exp 2a~ 

and 

h(gJ)= ;g-]//2----~- e x p  2 4  

where Y and Z are the respective mean lengths of the 
rods and gaps, and o" v and ere are the respective stan- 
dard deviations. A survey of models where H and h 
are various symmetrical distributions has shown that 
essentially identical results will be obtained for any 
reasonable symmetric functions of corresponding width 
to the above Gaussian distributions. If, however, as- 
symmetric distributions are used for H and h, the shape 
of the diffraction peaks will be distorted accordingly 
(Rheinhold, Fischer & Peterlin, 1964; Kortleve & 
Vonk, 1968). In the particular case of solution grown 
crystals there has been no evidence of asymmetry. The 
volume crystallinity Z of the structure represented by 
the above trapezium rods will be 

17-t  
z . . . .  A, .... 

where X =  17+ Z is the mean periodic distance. 
In part I, the scattered intensity was shown to con- 

sist of two terms IB and Ic, where IB was directly pro- 
portional to N. In this article the straightforward case 
will be considered where N is sufficiently large that Ic 
can be neglected in the region of interest. Using the 
above definitions of ~, H and h it is found that the 
main component IB per unit volume of scatterer 
reduces to 

I~(s) = _ _  

where 

 o /sin2 s, I 
2n2s=,{ ' (nst ) 2 

1 -]Fx] 2 -  IFvl (1 -IF, F) cos 2nsxX ] 
x - IFzl  (1-1FvIi)c__o_s2=s(1-z)X__ 

I I - & F  
(1) 

Fv = exp ( -  2:gZsZo'v 2) exp (-2his I?) 
Fz-- exp ( -  2nZsaa=,) exp ( -  2nisZ) 
Fx = exp (-2nZsZ[a} +a~]) exp ( -  2his[F+ 2 ] ) ,  

so that 

Iryl =exp ( -  2n2s2.~) 
IFzl =exp ( -  2nZsZa=,) 
[Fd =exp (-2nZsZ[a 2 + a2A). 

The total angle of scatter 20 is derived from the variable 

2 sin 0 
S ~ .- . 

2 

By putting 

2 =0.2_{_ 2 ax a ,  (2) 

it can be seen that F ,  is related to the fluctuation of the 
total period X in the same way that Fv and Fz are 
related to 17 and 2,  and that ax is the standard devia- 
tion of the periodic lengths about the mean X. 

3. Relation between intensity curve 
and model parameters 

3.1. General form of IB 
Typical forms of equation (1) are shown in Figs. 2, 3, 

4 and 5, where IB is plotted against the variable sa ~. 
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Fig.3. /B calculated from equation (1) with Z=0.8, t = 0  and 

where a v and crz are varied keeping o-z=0.1X'; curve A, 
au=O, az=0.5Z; curve B, au=0"125Y, az=0;  curve C, 
av=0"121 Y, az=0.121Z. 
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The increase in width of the diffraction peaks with in- 
creasing order is typical of periodic structures where 
long-range order is destroyed. The maxima appear 
close to positions where s)~ is integral. Since s =  
2 sin 0/2, this is consistent with Bragg's Law (Hose- 
mann, 1949). This well known fact is used regularly 
to estimate the mean periodic length )?. Distortions 
from true Bragg positions can occur when the peaks 
are broad (Lindenmeyer & Hosemann, 1963) or if H 
or h are asymmetric (Rheinhold, Fischer & Peterlin, 
1964), but this is not the concern of this article. 

It should be noted that IB gives no zero order scatter 
and approaches zero for s)?< 1. The zero order scatter 
for the model is contained in the neglected Ic (part I; 
Hosemann & Bagchi, 1962, p. 419). 

3.2. Influence o f t  
The parameter t which is of particular interest is 

isolated in the simple factor sin 2 ~zst/(nst) 2. When t -+ 0, 
this factor approaches unity and one obtains the de- 
generate rectangle profile. The form of the factor is 
familiar. As st increases from zero, the factor decreases 
and then oscillates positively with decreasing ampli- 
tude, going through zero at integral values of st. 
Since for polymers we are only interested in t < 0.15 ,(  
and in the intensity curve for s , (<  5, we will only be 
concerned with the initial fall-off from unity. 

The scatter for a trapezium profile can therefore be 
regarded as being identical to that of the rectangle pro- 
file of equivalent crystallinity, but modified by the 
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Fig.4. IB calculated from equation (1) with t=0,  Z=0"85 and 
where tr= is varied, keeping tru/Y= try/Z; curve A, trz = 0.05~'; 
curve B, trz = 0" 1 a°; curve C, tr= = 0" 15~. 

slowly decreasing sin 2 ~zst/Ozst) z factor.* The influence 
of the factor becomes increasingly effective with higher 
scattering angles and is illustrated in Fig. 2. 

3.3 Combinations of  au and crz for given az 
According to equation (2), there is a whole range of 

combinations of the individual deviations ~r u and a~ 
that can produce the same overall G~. The range is il- 
lustrated by Fig. 3, which shows IB calculated from (1) 
for three cases in which az = 0.1 J?. Curve A is for one 
extreme where a u = 0  and the fluctuations occur only 
in the gap lengths. Curve B is for the other extreme 
where Gz=0. Curve C is the particular intermediate 
case where ~ru/I 7= crUZ. For these curves Z has the rel- 
atively high value of 0.8, so that Z <  17. Therefore for 
curve C, Gz<au and hence the curve is almost coin- 
cident with B where o'z = 0. 

Bearing in mind the logarithmic scale, it is important 
to note that the main features such as peak height and 
width are essentially the same in all three cases, espe- 
cially for the well-resolved peaks. The main discrepan- 
cies between the three curves occur in the regions be- 
tween peaks. With present low-angle X-ray techniques 
the intensity in these regions would probably be so 
low that differences between the curves would not be 
significant. Thus for most practical purposes, any com- 
bination of o'u and az for a given ax can be adequately 
represented by either of the simplified extreme cases 
illustrated by curves A and B. 

3.4. Separation of  ax from X 
The effects of crx and X on IB are shown in Figs. 4 

and 5 which give two series of curves where au]17= 
az/Z, and t = 0. In Fig. 4 ax is varied keeping 27 con- 
stant at 0.85, and in Fig. 5 27 is varied with crz con- 
stant at 0.075 J?. 

For any general combination of au and az, the de- 
pendence on crx and 27 in equation (1) cannot be sepa- 
rated analytically. However according to § 3.3 one is 
justified in taking the case where ~rz =0  as an approxi- 
mation for the general case. (For high crystallinities 
- i.e. Z>0"5 - this will be better than taking au=O, 
since, in the absence of any evidence to the contrary, 
it is most probable that individual deviations will be 
proportional to their respective means. In such cases 
Gz,~ru. ) If az=0,  equation (1) reduces to 

f sin2zff1-27)s'( sin2zcst 
~2S2X2 } { (~zst) 2 } I B = ~2o 

t 

{ } x 1--21F~I cos2~s t '+  IF~I 2 " (3) 

* The referee has pointed out that this follows when one 
recognizes that the trapezium model can be derived by folding 
the equivalent rectangle profile with a stencil rectangle func- 
tion of height lit and width t. The Fourier transform of the 
stencil will be sin zcst/nst. It then follows from part I that the 
rod scattering amplitudefj and the intensity 18 can be obtained 
from the rectangle case by multiplying by sin Itst/~st and 
sin2 nst/(nst)2 respectively. 

A C 26A - 2 
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The parameters ax and Z can now be separated into a 
particle function (P.F.) and a lattice function (L.F.) 
which may be grouped as follows: 

P.F. = Q02.~{ sin2n(1 -z)sX sin2nst 
n2s2X2 } { (nst) 2 } (4) 

1 -IFxl 2 
and L.F.= 1-21F~I c o s 2 n s X + l F ~ l  z " (5) 

P.F. is independent of the fluctuations in the lattice 
period and depends essentially on the shape of the 
mean crystalline density profile as described by the 
parameters Z and t. L.F. is the well known formula of 
Zernike & Prins (1927). It is illustrated in Fig. 6 for 
a~=0.075 X and 0.15 )?. (The special case represented 
by equation (3) which is here regarded as an approxi- 
mation to (1) can, in fact, be derived directly by using 
the approach of a one-dimensional paracrystal, where 
one considers only the fluctuations of the lattice rather 
than independent fluctuations of both rod and gap 
lengths - see part I.) 

4. Width and area of  diffraction peaks 

The degenerate case when t = 0 in the simplified equa- 
tion (3) has already been analysed to obtain expres- 
sions for the width and area of the peaks (Hosemann 
& Bagchi, 1962). A similar approach can be used for the 
trapezium case. For (t/X) < 0.15 and Z> 0.7 the whole 
P.F. of equation (4) will vary slowly through the peaks 
of L.F. As a good approximation therefore, the shape 
of the peaks of In can be taken to be identical to their 
shape in L.F.; the P.F. will act as a modulating factor 
which will govern the overall peak intensity. 

For well-resolved peaks it can be shown that the 
area under each peak of L.F. is essentially constant for 
all values of ax and order n, and that when this area is 
integrated with respect to the variable s it takes the 
value 1/X. (This can be done by approximating IFxl to 
the first two terms of the exponential expansion, and 
by assuming IFxl will remain constant over the region 
of each peak.) For a given order n, there is an inverse 
relation between the width and height of the peaks such 
that the area remains constant. If the width is defined 
as the ratio of area/height, it can be shown from the 
L.F. (Hosemann & Bagchi, 1962) that 

a~2 , (6) 5_~7~2n 2 ~_- 
where 5 is measured on the scale of sA'. 5 refers to the 
width of the peaks of both L.F. and In and is seen to 
be independent of both t and Z. 

A value for the integral intensity of the peaks in IB 
can be obtained by multiplying the mean values taken 
by P.F. over the region of the peaks, by the area 1/~ 
of the L.F. peaks. Using the value of P.F. taken when 
sX has the integral value n, then from equation (4) the 
nth order peak will have an integral intensity given by 

I n 
i " 2nnt ! sin 

{si++nl+} 
x (nn) 2 . (7) 

(In the context of its derivation, equation (7) is only 
meaningful when the nth order peak is well resolved; 
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if this is not so it must be regarded only as an approxi- 
mation of the integrated intensity over the range 
(n-½)<sX<(n+½).) 

A useful related quantity is the total integral inten- 
sity of IB over all scattering angles. This can be ob- 
tained by the non-rigorous procedure of summing all 
In as given in (7) from orders 1 to infinity. (N.B. There 
is no zero order peak in L.F., nor hence in IB. All zero 
order scatter is contained in the neglected intensity 
component Ic.) Thus the total integrated scatter on 
one side of the main beam will be 

IB • d(s.g) ~ - Y, I n =  02° t 
0 .=2  2 -  x ( 1 - Z ) -  ~ • (8 )  

This same relation for t = 0  has been obtained rigor- 
ously by Hosemann & Bagchi (1962) using Jordan's 
Theorem. The total intensity can also be obtained via 
an alternative route by calculating the mean-square 
fluctuation (r/z) of the density (Debye, Anderson & 
Brumberger, 1957; Porod, 1951, 1952). Equation (8) 
can be confirmed by calculating (r/E) for the present 
trapezium profile. 
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Fig. 7. Rn calculated f rom equat ion (9) w i th  t = 0  and 2:=0"85. 
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Another useful set of quantities, which is not usually 
discussed in the literature, is the relative intensities of 
the different order peaks. Taking the area of the first 
order peak as the reference standard, the relative inte- 
gral intensity Rn of the nth order can be defined from 
equation (7) to be: 

R In 1 ~ sin2rcnt/X ~ sin2~zn( 1 --Z) (9) . := 
Although the expressions (6) to (9) are derived from 

the simplified case where az = 0 and have also involved 
several further approximations, good agreement is 
found with measurements made directly on curves 
calculated from the full equation (1). The agreement 
can be seen qualitatively from the examples in Figs. 4 
and 5. The quantity Rn shown plotted in Fig. 7 for 
t = 0 checks with the behaviour of these curves. Fig. 8 
shows the effect of t on In keeping Z constant. Tb.e in- 
fluence of the sin E ~zst/(z~st) 2 only becomes really no- 
ticeable for t > 0.05 )~ and is then more marked in the 
higher orders. In all cases, expressions (6) to (9) tend 
to break down when the peaks become so broad that 
they merge with their neighbours. Nevertheless in these 
circumstances In as given by equation (7) has still been 
found to be representative of the mean intensity around 
the point sX=n. 

Interpretation of peak intensities when t > 0 

The above analysis shows that the position and width 
of the diffraction peaks are essentially unaffected by 
the value of t. The only noticeable effects are on the 
integral intensities of the peaks. It is the purpose of 
this section therefore to examine how deductions from 
integral intensity measurements will be modified when 
a structure is interpreted in terms of a trapezium model 
with t > 0, instead of the simpler rectangle where t = 0. 
To form a basis for discussion several quantities rele- 
vant to absolute and relative intensity measurements 
have been evaluated in Table 1 for various combina- 
tions of Z and t. It should be emphasized that the 
quantity IB in this article is related to the diffraction 
of a point collimated beam from only one one-dimen- 
sional periodic structure. To compare with experimen- 
tal curves one must multiply by the Lorentz factor as- 
sociated with the orientations of all the structural units 
within the sample (Hosemann & Bagchi, 1962, p. 440), 
and also account for slit smearing if a line collimated 
beam is used (Kortleve & Vonk, 1968). 

First consider experiments involving the absolute 
measurement of the total integral intensity and its in- 
terpretation with equation (8). In previous reports of 
such measurements (e.g. Fischer, Goddar & Schmidt, 
1967; Hermans & Weidinger, 1960) it has been as- 
sumed that t = 0; the experimental measurements have 
then been used to test the consistency between Z and 
00 for a simple rectangle model. However, equation (8) 
shows that the total intensity is reduced by increasing t 
and furthermore, that the same value can be produced 

A C 26A - 2* 
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by various combinations of Z and t. The size of the 
effect is shown in the first column of the Table by the 
variation of the quantity {X (1-Z)-½(t / .~)}.  Thus it is 
possible to introduce systematic errors into the inter- 
pretation by a priori assuming an incorrect value of t 
for the structure. However errors can also be intro- 
duced into this type of experiment due to the limita- 
tions and difficulties of measuring low intensity levels. 
With present equipment and using the most ordered 
sediments of polymer crystals, only the first three peaks 
can be detected with any certainty and accurate inten- 
sity measurements are usually only available for the 
first two. (In the published intensity curve of Fischer, 
Goddar & Schmidt (1967), the fourth diffraction peak 
is only just visible.) However, if the results are to be 
interpreted with equation (8), all of the scattered inten- 
sity must be measured; if this is not done a further sys- 
tematic error will be introduced. By comparing equa- 
tion (7) with equation (8) it is possible to estimate how 
the individual peaks contribute to the total intensity. 
For example when Z=0.85 and t=0 ,  it is found that 
/1 contributes 32.7%, I2 gives 26.0%, 13 gives 17.15% 
and 14 gives 8.9 %. Thus even if one optimistically as- 
sumes that all the intensity of the first four peaks can 
be detected, the measured intensity will in this example 
only represent 85 % of that predicted by equation (8). 
The second column of Table 1 shows how the percent- 
age in the first four peaks varies with X and t. When 
t = 0  about 12-15% of total predicted scatter is ne- 
glected, whereas when t = 0.1 .~ only 1-2 %0 is neglected. 
However the actual proportion neglected in a partic- 
ular case will depend on both the values of t and on 
the position of the experimental cut-off. Attempts can 
be made to compensate for the neglected scatter by as- 
suming that the tail of 1B where the intensity becomes 
indistinct will fall off with a 1/s z dependence (Kortleve 
& Vonk, 1968). Although this procedure can be justi- 
fied for a sharp two phase structure with t = 0, the even- 
tual fall-off for t > 0 will be faster than this. 

In the above experiments, the measurement of the 
intensity and the effects of t, both become more prob- 
lematic with larger scattering angles. These difficulties 
can be minimized by restricting the measurement to 
only the first order peak and interpreting the results 
with equation (7). The third column of Table 1 shows 
11/o~; it is seen to be sensitive to changes in X but very 
insensitive to t. For reasonable values of t, Ix will remain 
essentially unchanged from its value at t=0 .  Hence 

provided the peak can be separated from the back- 
ground and neighbouring peaks, this method is better 
than measuring the whole intensity curve in that it en- 
ables 00 and Z to be related without any ambiguity 
from the unknown value of t. 

Finally consider the measurement of relative inten- 
sities. Due to the practical difficulties with higher order 
peaks and to the general degree of disorder in most 
samples, it is likely that only RE will be resolvable. The 
variation of RE is shown in the last column of Table 1. 
RE is mainly affected by Z and it is relatively insensitive 
to t. If this small change with t is acceptable and can 
be ignored, it is evident that for the purpose of corre- 
lating the scatter with X a measurement of R2 can be 
a valuable alternative to, or complement to, the meas- 
urement of /1, especiallyl as R2 does not involve 00. 
It is interesting to note that if in calculating X from/1 
and RE, the parameter t is wrongly made zero then/1 
will give a slight overestimate of Z, while R2 will give 
an underestimate. 

In principle if sufficient peaks can be resolved and 
accurately measured, t as well as Z can be determined 
by elimination from equations (7) and (9). Unfortu- 
nately in practice the range most sensitive to changes 
in t is over the third and higher order peaks, where the 
intensity is low and difficult to measure. It is therefore 
likely to be impractical to estimate t with any accuracy. 
However even if t were to be determined for a partic- 
ular polymer sample, it would only be immediately 
significant as a parameter in the one dimensional model. 
The main challenge would be to interpret the distance 
of transition in terms of a projection of the molecular 
structure within the sample. 

Summarizing, the possibility of a finite but unknown 
transition length introduces an uncertainty into deduc- 
tions involving 27. The effect is most serious with inten- 
sity measurements which involve the higher order 
peaks, such as measurements of the total scattered in- 
tensity. If however the measurements are restricted to 
just the first order peak the error becomes very small 
and one can interpret the results using a simple rec- 
tangle model irrespective of whether or not an effective 
transition zone is present. 
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Diffuse X-ray Scattering from Crystals of Hexammineeobalt(III) Nitrate 
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Crystals of hexamminecobalt(III) nitrate are found not to be cubic like those of the thiocyanatopentam- 
mine derivative but to be tetragonal and of space group symmetry P42nm. The unit-cell parameters are 
a = b = 21.66, c = 33"32 + 0"05 A. The most prominent feature of the difference in response to X-rays of 
these and similar crystals is the heavy diffuse scattering produced by the hexamminecobalt(III) nitrate. 
By means of a series of cylindrical Laue photographs, taken with monochromatic cobalt (Co Ke) radia- 
tion, covering a quadrant of reciprocal space at regular intervals of 5 ° about the tetragonal axis, the 
diffuse domains in the reciprocal lattice are explored and information obtained on the nature and direc- 
tion of propagation of the thermal waves in the crystal. An interesting feature of the crystal dynamics of 
hexamminecobalt(III) nitrate is that the only effects observed as a result of independent motion of large 
structural units are those of transverse waves. There are no noticeable similar effects ascribable to 
longitudinal waves. Thus information is obtained on the behaviour, shape and orientation of the struc- 
tural units [Co(NH3)613 + and (NO3)-. 

Introduction 

It has been observed by Fletcher & McDoom (1967) 
that in the crystal of the inorganic salts of the hexam- 
mine and pentammine complexes of cobalt and related 
metals the symmetry of each crystal depends on (i) 
the effective symmetry of the complex cation, and (ii) 
the nature and symmetry of the anion or anionic 
components. On the basis of a study of the X-ray 
diffraction spectra, they suggested further that in the 
cubic crystals of aquopentamminecobalt(III) per- 
chlorate [Co(NH3)s.HEO](C104)3 the complex ion 
[Co(NH3)5. H20] 3+ exhibits ellipsoidal rotation. 

This is consistent with the report by Hassel & 
B6dtker Naess (1928) that these crystals as well as those 
of hexamminecobalt(III) perchlorate 

[Co(NH3)6](CIO4)3 
are cubic. 

However, in the case of hexamminecobalt(III) 

* Present address: Department of Physics, University of 
Moncton, Moncton, N.B., Canada. 

nitrate [Co(NH3)6](NO3) 3 and its monosubstituted 
thiocyanato derivative [Co(NH3)sNCS](NO3)z, the 
former is not cubic while the latter is. The symmetry 
of the crystals of the hexammine compound has been 
found, as will be described presently, to be tetragonal 
and that of space group P42nm; while that of the 
corresponding thiocyanatopentammine compound was 
determined (though not reported) by Price & Fletcher 
(1965), and confirmed in the course of these investi- 
gations to be cubic and that of space group Fm3m. 

Moreover, one of the most distinctive features of 
the response to X-rays of these crystals and others 
being studied in this laboratory is the heavy diffuse 
scattering produced by the crystals of hexammineco- 
balt(III) nitrate, as opposed to the others. 

It has been shown by Laval (1938, 1939a,b) and 
Lonsdale (1942, 1942-3), and others, that the diffuse 
scattering produced by simple crystals is essentially of 
thermal origin resulting from the vibrations of the 
individual atoms or monatomic ions; and is of two 
types, appearing on photographs as: (i) spots and (ii) 
streaks, whose maxima in both cases are always found 
to be on the unforbidden reciprocal lattice points. 


